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The enhanced r-bond nucleophilicity of allylsilanes has been demonstrated by Lewis acid 

catalyzed: additions to carbonyl compounds' (1,4-addition with u,8-unsaturated enoneslc"), 

acylation, 
lc,3 

and even alkylation. 
4a 

However, not a single intramolecular reaction of an 

allylsilane and a carbonyl compound has been reported. 
5 

Although a pericyclic mechanism, 

(1) with X = SiMe 
la 

3, has been invoked, no evidence bearing on this suggestion has appeared. 

We now supply intramolecular examples and evidence inconsistent with a concerted pericyclic 

mechanism. 

The ally1 transfer from an allylsilane to a carbonyl bears a close formal analogy to 

the ene reaction of olefinic aldehydes (which is also catalyzed by Lewis acids).6 The 

latter, (1) with X = H, is clearly a concerted process under both the thermal and catalyzed 

conditions.6c Among the probes of this mechanism (X = H) which we have employed is the 

stereospecificity of the reaction of aldehyde 1: only the axial alcohol isomer (3) is ob- 

tained.6c The more stable equatorial isomer (5) cannot be formed in a pericyclic process. 

We have now prepared (vide infra) the silyl analog (2) and examined its cyclization with -- 

Lewis acids (SnC14 and BF3*Et20), with F- ion, and on silica gel. 

c?r?x - /\ r- \ (1) 
* 0 c\oAx 

C2) &io- $-yJ,,_ + aox 
1 (X-H) 3 (X=H) 5 (X=H) 

2 (X=SiNe3) 4 (X=SiMe3) 6 (X=SiMe3) 
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The facilitating role of the SiMe3 group was immediately evident on attempting a 

purification of aldehyde 2 by rapid chromatographic filtration (through SiO2 previously de- 

activated with moist benzene) which afforded, instead, mixtures of axial and equatorial 

alcohols and silyl ethers (3-6).7 _ _ Silyl aldehyde 2 also cyclized on thin layer chromato- 
8a 

graphic analysis and was unstable to our usual gc analysis conditions. The ratio of pro- 

ducts varied from 2:l (favoring the equatorial isomer) in a run affording only the silyl 

8b ethers to 56:44 (favoring the axial isomer) in runs affording largely the alcohols. 

H 

Scheme I 

The production of the equatorial isomer eliminates the concerted pericyclic mechanism 

(9, Scheme I) as a major contribution to the mechanism. Rather, interaction at an electro- 

philic site affords cationic intermediate 7 which is subject to a variety of silicophilic 

attacks: a, internal; b, by water; and c, by a nucleophilic silica site. 

Turning to the cyclizations observed with soluble Lewis acids, unlike aldehyde 1, the 

silyl aldehyde (2) does not react completely with 0.1 equiv. of SnC14 at -35". 

vious studies,'-' 

As in pre- 

stoichiometric catalysis is required. Aldehyde 2 cyclizes in 78% isolated 

yield with SnC14/CH2C12 at -78' or -35" in less than 15 min. The initial products are silyl 

ethers 4 and 6 (51:49 at -35", 59:41 at -78') which undergo hydrolysis on quenching with 

saturated aqueous NH4C1. 
9 

We rationalize their production as the reaction of two molecules 

of 7 (Scheme I, attack b) with intermolecular C-MI transfer of the silyl group. Again there 

is no evidence for the pericyclic process (9). 

With BF3*Et20/CH2C12 (-78O or O', 15 min), aldehyde 2 affords alcohols 3 and 5 (85:15 

ratio) independent of the quench employed. 
9 

To determine whether the increased stereo- 

selectivity reflects a change in mechanism, toward participation of 9 or to a fluoride pro- 

moted cyclization, eq. (3), we have examined the reaction of aldehyde 2 with Bu4NF in an- 

hydrous THF. After a two-hour exposure to 3 equivalents of the fluoride at 55',l" only 

alcohols 3 and 5 could be detected. The equatorial isomer (5) constitutes 82% of the 
. 

volatile product. The "push" and "pull" mechanisms display diametrically opposed stereo- 

selectivities. 
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(3) -33 
0' 

The synthesis of silyl aldehydes 2, 1_4, 2, and 1_6 should dispel the notion that allyl- 

silanes are too reactive to survive normal chemical operations (see Scheme II). The silyl 

13 14 

Scheme II:" a, nBuLi, TMEDA, hexane 25'; b, Me3SiCl; c, 9:l MeOH-H20, reflux; d, TosCl, 

pyridine; e, NaCN, HMPT, 25"; f, iBu2AlH, Et20, O'C; then aq. NH4C1; g, HCr03C1*pyr, 

CH2C12; h, NaH, DME, then aq. KH2P04; i, LiA1H4, Et20. 

alcohol (11) was prepared via the dilithio derivative (13, n=l) by treatment with trimethyl- 
- 

chlorosilane and hydrolysis of the silyl ether in refluxing methanol. Homologation via cya- - 

nide displacement of the tosylate proceeds in 60% overall yield when the displacement reac- 

tion is carried out overnight at ambient temperature. 
12 

The nitrile reduction and hydroly- 

sis of the imine proceed without incident. A potentially shorter synthesis via C-silyla- 

tion of the homolog of 10 failed. Alkoxide coordination at the allyllithium, as shown in 
- 

13 appears essential for a facile C-silylation and does not occur when n=2 or 3. Reduction 
- 
of aldehyde 2 followed by repetition of the previous homologation sequence affords aldehyde 

16 (28% from 2, not optimized). Aldehyde 14 can be converted (+55%) to its less stable 

epimer (15) via kinetic protonation of the enolate. 
-- 

With recent advances in methods for introducing the allylsilane function in complex 

molecules,13 we expect the cyclization methods reported here to take on increasing impor- 

tance. Evidence for their generality has already come from studies on aldehydes 14, 15, and 
-- 

16. Unlike aldehyde 2, aldehydes 14-+16 are stable to chromatography on silica; but each 
- -- 
reacts rapidly with SnC14 even at -78": aldehyde 14 affords intermolecular products while 

aldehydes 15 and 16 each give the bicyclic alcohols expected from intramolecular allyla- 
- 

tion of the carbonyl. Applications of this cyclization reaction to natural products syn- 

thesis are in progress. 
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